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Image Processing 

Lecture 5 
FREQUENCY DOMAIN PROCESSING 
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Spatial Frequency 
¢  Spatial frequency measures how fast the image intensity 

changes in the image plane 

¢  Spatial frequency can be completely characterized by the 
variation frequencies in two orthogonal directions (e.g., 
horizontal and vertical) 
l      : cycles/horizontal unit distance 
l      : cycles/vertical unit distance 

l  Horizontal and vertical frequency can be combined and 
expressed in terms of magnitude and angle: 
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Spatial Frequency 
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2D Sinusoidal 
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Angular	
  Frequency	
  

¢  The	
  previous	
  de-inition	
  does	
  not	
  take	
  into	
  account	
  the	
  
viewing	
  distance.	
  	
  

¢  More	
  useful	
  measure	
  is	
  the	
  angular	
  frequency,	
  	
  
expressed	
  in	
  	
  cycles	
  per	
  degree:	
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Angular	
  Frequency	
  

¢  For	
  the	
  same	
  picture	
  and	
  picture	
  height	
  (h),	
  angular	
  
frequency	
  increases	
  with	
  distance.	
  

¢  For	
  -ixed	
  viewing	
  distance	
  (d),	
  larger	
  displays	
  give	
  less	
  
angular	
  frequency.	
  

fθ =
fs
θ
=
πd
180h

fs (cpd)
fs : cycles per picture height
fθ : cycles per degree

Resolu1on	
  
¢  The	
  ability	
  to	
  seperate	
  two	
  adjacent	
  
pixels,	
  that	
  is,	
  resolve	
  the	
  details	
  in	
  	
  test	
  
grating.	
  	
  

¢  This	
  ability	
  depends	
  on	
  several	
  factors	
  
such	
  as:	
  
l Picture	
  (monitor)	
  height	
  (h)	
  	
  
l Viewer’s	
  distance	
  from	
  monitor	
  (d)	
  
l The	
  viewing	
  angle	
  (theta)	
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Viewing	
  Distance	
  

20/20 vision  
= 1 min of arc 
(1/60 degrees) 

Optimum viewing distances: 
•  SDTV = 7.1 x PH (picture height) 
•  HDTV = 3.1 x PH  

Horizontal	
  Viewing	
  Ranges	
  at	
  
Op1mum	
  Distances	
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Contrast	
  Sensi1vity	
  vs.	
  Spa1al	
  
Frequency	
  of	
  HVS	
  

¢  Contrast	
  sensitivity	
  
function	
  (CSF)	
  for	
  
various	
  retinal	
  
illuminance	
  values	
  

¢  We	
  can	
  not	
  perceive	
  
beyond	
  a	
  certain	
  spatial	
  
frequency	
  (50cpd).	
  	
  	
  

Spa1al	
  Frequency	
  for	
  Peak	
  
Contrast	
  Sensi1vity	
  

fθ =
fs
θ
=
π (3.1)
180

fs =
fs
18
(cpd)

9Td curve peaks at  fθ = 4cpd →  fs = 72cpPH→15 lines per cycle
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Implica1ons	
  and	
  Applica1ons	
  

¢  The	
  HVS	
  is	
  more	
  sensitive	
  to	
  low	
  spatial	
  frequencies	
  (i.e.,	
  
luminance	
  changes	
  over	
  a	
  large	
  area)	
  than	
  high	
  spatial	
  
frequencies	
  (i.e.,	
  rapid	
  changes	
  within	
  small	
  areas),	
  which	
  is	
  an	
  
often-­‐exploited	
  aspect	
  of	
  most	
  image	
  compression	
  techniques.	
  	
  

¢  The	
  HVS	
  is	
  more	
  sensitive	
  to	
  high	
  contrast	
  than	
  low	
  contrast	
  
regions	
  within	
  an	
  image,	
  which	
  means	
  that	
  regions	
  with	
  large	
  
luminance	
  variations	
  (such	
  as	
  edges)	
  are	
  perceived	
  as	
  
particularly	
  important	
  and	
  should	
  therefore	
  be	
  detected,	
  
preserved	
  and/or	
  enhanced.	
  	
  
¢  Hence,	
  may	
  discard	
  redundant	
  high	
  spatial	
  frequency	
  

content	
  while	
  preserving	
  edges	
  

Note:	
  Importance	
  of	
  Edges	
  

¢  Our	
  visual	
  system	
  tends	
  to	
  overshoot	
  and	
  
undershoot	
  at	
  the	
  boundaries	
  of	
  regions	
  with	
  
different	
  intensities	
  (recall	
  Mach	
  bands).	
  	
  

¢  Explains	
  the	
  ability	
  to	
  seperate	
  objects	
  even	
  in	
  
dim	
  light.	
  	
  

556 Human visual perception

(a) (b) (c)

Figure A.14 Mach bands.

human subject (Figure A.15). The observer’s field of vision is filled mostly by the surround
luminance (Y0). In the central area, the left portion of the circle has a test luminance value
(Y ) whereas the right half shows a slightly increased value (Y +�Y ). Subjects are asked
to inform at which point the difference between the two halves become noticeable 3 and the
corresponding value of Y and �Y are recorded. The process is repeated for a wide range
of luminance values.

Experiments of this type have concluded that over a range of intensities of about 300:1,
the discrimination threshold of vision is approximately a constant ratio of luminance. If
one plots log(�Y/Y ) as a function of Y , it will show an interval of more than two decades
of luminance over which the discrimination capability of vision is about 1% of the test
luminance level. In other words, within that range, human vision cannot distinguish two
luminance levels if the ratio between them is less than approximately 1.01.

Figure A.15 Contrast sensitivity test pattern.

In vision science, contrast sensitivity is also measured using a spatial grating test pattern.
The resulting plot is called contrast sensitivity function (CSF) and it represents the contrast
sensitivity as a function of the spatial frequency (in cycles/degree). Figure A.16 shows a
family of curves, representing different adaptation levels – from very dark (0.0009 Td) to
very bright (900 Td), where 9 Td is a representative value for electronic displays4. The 9
Td curve peaks at about 4 cycles/degree. Below that spatial frequency the eye acts as a

3This concept of Just Noticeable Difference (JND) is also used in many other psychophysics experiments.
4A Troland (Td) is a unit of retinal illuminance equal to object luminance (in cd/m2) times pupillary aperture
area (in mm2).
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Note:	
  Importance	
  of	
  Edges 

15 

Our	
  visual	
  system	
  groups	
  wavelengths	
  of	
  a	
  rainbow	
  to	
  form	
  distinct	
  
color	
  bands.	
  It	
  draws	
  arti-icial	
  lines	
  to	
  separate	
  one	
  color	
  from	
  another.	
  

Frequency 
Representation 
of Images 

16 
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Signal Representation Using 
Sinusoids 

All periodic signals can be represented as a sum of sinusoids. 

Square Wave Example 

18 
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2D Sinusoidal Images 

Image Example 
 

20 

original 

1.2% 

20% 

0.3% 

5% 

80% 
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Assumed Periodicity for Images 

21 

Fundamental Period   N = image size

Fundamental Frequency  ω =
2π
N

Sinusoidal Frequencies   kω,   k ∈ Ζ

Signal Synthesis with Sinusoidals 

22 
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2D Fourier Transform 

23 

MATLAB	
  Example	
  

I = imread('Figure11_04_a.png'); 
Id = im2double(I); 
ft = fft2(Id); 
ft_shift = fftshift(ft); 
imshow(log(1 + abs(ft_shift)), []) 

x 

y 
u 

v 
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Transform	
  Domain	
  Processing	
  

¢  Certain image processing tasks (e.g., filtering, compression) 
can be better performed in the transform domain. 

Separability	
  of	
  Fourier	
  
Transform	
  

¢  The	
  Fourier	
  Transform	
  is	
  separable,	
  i.e.,	
  
the	
  FT	
  of	
  a	
  2D	
  image	
  can	
  be	
  computed	
  by	
  
two	
  passes	
  of	
  the	
  1D	
  FT	
  algorithm,	
  once	
  
along	
  the	
  rows	
  (columns),	
  followed	
  by	
  
another	
  pass	
  along	
  the	
  columns	
  (rows)	
  of	
  
the	
  result.	
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Fourier 
Transform 
Properties 

27 

Fourier Spectrum of a 1D 
Sinusoidal 

28 
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Fourier Transform of a 2D 
Sinusoidal 

Fourier	
  Transform	
  of	
  a	
  Stripe	
  	
  

original  
image 

Fourier  
Transform  

Fourier transform 
Along the vertical axis 
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Effect of Scaling and Rotation 

31 

Effect	
  of	
  Rota1on	
  

¢  If	
  an	
  image	
  is	
  rotated	
  
by	
  a	
  certain	
  angle	
  θ,	
  
its	
  2D	
  FT	
  will	
  be	
  
rotated	
  by	
  the	
  same	
  
angle.	
  

220 FREQUENCY-DOMAIN FILTERING

(a) (b)

(c) (d)

Figure 11.5 Original image (a) and its 2D FT spectrum (b); Rotated image (c) and its 2D FT
spectrum (d).

11.3 LOW-PASS FILTERING (LPF)

Low-pass filters attenuate the high frequency components of the Fourier Transform of
an image, while leaving the low frequency components unchanged. The typical overall
effect of applying a low-pass filter (LPF) to an image is a controlled degree of blurring.
Figures 11.6 and 11.7 show examples of applications of LPFs for smoothing of false
contours (Section 5.4.3) and noise reduction4, respectively.

11.3.1 Ideal LPF

An Ideal low-pass filter enhances all frequency components within a specified radius (from
the center of the FT), while attenuating all others. Its mathematical formulation is given as
follows:

HI(u, v) =

⇢

1 if D(u, v)  D0

0 if D(u, v) > D0
(11.20)

4We shall discuss noise reduction in more detail in Chapter 12.

Image            Fourier Transform 
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Linearity	
  

FOURIER TRANSFORM: THE MATHEMATICAL FOUNDATION 219

F[a · f1(x, y) + b · f2(x, y)] = a · F1(u, v) + b · F2(u, v) (11.12)

and

a · f1(x, y) + b · f2(x, y) = F�1
[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:

F[f(x� x0, y � y0)] = F (u, v) · exp[�j2⇡(ux0/M + vy0/N)] (11.14)

and

f(x� x0, y � y0) = F�1
[F (u, v) · exp[j2⇡(ux0/M + vy0/N)] (11.15)

Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms

In addition to the Fourier Transform, there are many other mathematical transforms used
in image processing and analysis. Some of those transforms will be described later in the
book, whenever needed (e.g., the Discrete Cosine Transform (DCT), in Chapter 17), while
many others (e.g., sine, Hartley, Walsh, Hadamard, Wavelet, and slant, to mention but a
few) will not be discussed in this text. Please check the “Learn more about it” section at
the end of the chapter for useful pointers and references.

Transla1on	
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F[a · f1(x, y) + b · f2(x, y)] = a · F1(u, v) + b · F2(u, v) (11.12)

and

a · f1(x, y) + b · f2(x, y) = F�1
[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:

F[f(x� x0, y � y0)] = F (u, v) · exp[�j2⇡(ux0/M + vy0/N)] (11.14)

and

f(x� x0, y � y0) = F�1
[F (u, v) · exp[j2⇡(ux0/M + vy0/N)] (11.15)

Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms

In addition to the Fourier Transform, there are many other mathematical transforms used
in image processing and analysis. Some of those transforms will be described later in the
book, whenever needed (e.g., the Discrete Cosine Transform (DCT), in Chapter 17), while
many others (e.g., sine, Hartley, Walsh, Hadamard, Wavelet, and slant, to mention but a
few) will not be discussed in this text. Please check the “Learn more about it” section at
the end of the chapter for useful pointers and references.



10/24/13 

18 

Periodicity	
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F[a · f1(x, y) + b · f2(x, y)] = a · F1(u, v) + b · F2(u, v) (11.12)

and

a · f1(x, y) + b · f2(x, y) = F�1
[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:

F[f(x� x0, y � y0)] = F (u, v) · exp[�j2⇡(ux0/M + vy0/N)] (11.14)

and

f(x� x0, y � y0) = F�1
[F (u, v) · exp[j2⇡(ux0/M + vy0/N)] (11.15)

Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms

In addition to the Fourier Transform, there are many other mathematical transforms used
in image processing and analysis. Some of those transforms will be described later in the
book, whenever needed (e.g., the Discrete Cosine Transform (DCT), in Chapter 17), while
many others (e.g., sine, Hartley, Walsh, Hadamard, Wavelet, and slant, to mention but a
few) will not be discussed in this text. Please check the “Learn more about it” section at
the end of the chapter for useful pointers and references.Symmetry	
  

¢  Conjugate symmetry: 

 
where: 

 
i.e., if: 
 
then: 
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F[a · f1(x, y) + b · f2(x, y)] = a · F1(u, v) + b · F2(u, v) (11.12)

and

a · f1(x, y) + b · f2(x, y) = F�1
[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:

F[f(x� x0, y � y0)] = F (u, v) · exp[�j2⇡(ux0/M + vy0/N)] (11.14)

and

f(x� x0, y � y0) = F�1
[F (u, v) · exp[j2⇡(ux0/M + vy0/N)] (11.15)

Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms

In addition to the Fourier Transform, there are many other mathematical transforms used
in image processing and analysis. Some of those transforms will be described later in the
book, whenever needed (e.g., the Discrete Cosine Transform (DCT), in Chapter 17), while
many others (e.g., sine, Hartley, Walsh, Hadamard, Wavelet, and slant, to mention but a
few) will not be discussed in this text. Please check the “Learn more about it” section at
the end of the chapter for useful pointers and references.
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F[a · f1(x, y) + b · f2(x, y)] = a · F1(u, v) + b · F2(u, v) (11.12)

and

a · f1(x, y) + b · f2(x, y) = F�1
[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:

F[f(x� x0, y � y0)] = F (u, v) · exp[�j2⇡(ux0/M + vy0/N)] (11.14)

and

f(x� x0, y � y0) = F�1
[F (u, v) · exp[j2⇡(ux0/M + vy0/N)] (11.15)

Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms

In addition to the Fourier Transform, there are many other mathematical transforms used
in image processing and analysis. Some of those transforms will be described later in the
book, whenever needed (e.g., the Discrete Cosine Transform (DCT), in Chapter 17), while
many others (e.g., sine, Hartley, Walsh, Hadamard, Wavelet, and slant, to mention but a
few) will not be discussed in this text. Please check the “Learn more about it” section at
the end of the chapter for useful pointers and references.
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F[a · f1(x, y) + b · f2(x, y)] = a · F1(u, v) + b · F2(u, v) (11.12)

and

a · f1(x, y) + b · f2(x, y) = F�1
[a · F1(u, v) + b · F2(u, v)] (11.13)

where a and b are constants.

Translation The translation property of the Fourier Transform shows that if an image is
moved (translated), the resulting frequency-domain spectrum undergoes a phase shift, but
its amplitude remains the same. Mathematically:

F[f(x� x0, y � y0)] = F (u, v) · exp[�j2⇡(ux0/M + vy0/N)] (11.14)

and

f(x� x0, y � y0) = F�1
[F (u, v) · exp[j2⇡(ux0/M + vy0/N)] (11.15)

Conjugate symmetry If f(x, y) is real, its FT is conjugate symmetric about the origin:

F (u, v) = F ⇤
(�u,�v) (11.16)

where: F ⇤
(u, v) is the conjugate of F (u, v), i.e., if F (u, v) = R(u, v) + jI(u, v), then

F ⇤
(u, v) = R(u, v)� jI(u, v).
Combining Eq. ( 11.10) and Eq. ( 11.16) we have:

|F (u, v)| = |F (�u,�v)| (11.17)

Periodicity The FT (and its inverse) are infinitely periodic in both the u and v directions.
Mathematically:

F (u, v) = F (u+M, v +N) (11.18)

and

f(x, y) = f(x+M, y +N) (11.19)

Separability The Fourier Transform is separable, i.e., the FT of a 2D image can be
computed by two passes of the 1D FT algorithm, once along the rows (columns), followed
by another pass along the columns (rows) of the result.

Rotation If an image is rotated by a certain angle ✓, its 2D FT will be rotated by the
same angle (Figure 11.5).

11.2.4 Other mathematical transforms
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214 FREQUENCY-DOMAIN FILTERING

11.1 INTRODUCTION

This chapter builds upon the ideas introduced in Section 2.4.4, which state that some
image processing tasks can be performed by transforming the input images to a different
domain, applying selected algorithms in the transform domain, and eventually applying
the inverse transformation to the result. In this chapter we are particularly interested in
a special case of operations in the transform domain, which we call frequency-domain
filtering. Frequency-domain filters work by following a straightforward sequence of steps
(Figure 11.1):

1. The input image is transformed to a 2D frequency-domain representation using the
2D Fourier Transform (FT).

2. A filter of specific type (e.g., ideal, Butterworth, Gaussian) and behavior (e.g., low-
pass, high-pass) is specified and applied to the frequency-domain representation of
the image.

3. The resulting values are transformed back to the 2D spatial domain by applying the
inverse 2D Fourier Transform, producing an output (filtered) image.

Figure 11.1 Frequency-domain operations.

The mathematical foundation of frequency domain techniques is the convolution theo-
rem. Let g(x, y) be an image obtained by the convolution1 (denoted by the ⇤ symbol) of
an image f(x, y) with a linear, position invariant operator h(x, y), that is,

g(x, y) = f(x, y) ⇤ h(x, y) (11.1)

From the convolution theorem, the following frequency-domain relation holds:

G(u, v) = F (u, v)H(u, v) (11.2)

where G, F and H are the Fourier transforms of g, f and h, respectively.

1Two-dimensional discrete convolution was introduced in Section 10.2.2.
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Many image processing problems can be expressed in the form of Eq. (11.2). In a noise
removal application, for instance, given f(x, y), the goal, after computing F (u, v), will be
to select H(u, v) such that the desired resulting image,

g(x, y) = F�1
[F (u, v)H(u, v)] (11.3)

where F�1 is the inverse 2D Fourier Transform operation, exhibits a reduction of the
noisy contents present in the original image f(x, y). For certain types of noise, this result
could be achieved using a low-pass Butterworth filter (Section 11.3.3), for example.

There are two options for designing and implementing image filters in the frequency
domain using MATLAB and the IPT:

1. Obtain the frequency domain filter response function from spatial filter convolution
mask. The IPT has a function that does exactly that: freqz2. Figure 11.2 shows
examples of such response functions for the 3⇥3 average filter described by Eq.( 10.9)
and the 3⇥ 3 composite Laplacian sharpening filter described by Eq.( 10.16).

2. Generate filters directly in the frequency domain. In this case a meshgrid array (of
the same size as the image) is created using the MATLAB function meshgrid. This
is the method used in the Tutorials in this chapter.

(a) (b)

Figure 11.2 Two examples of response functions for frequency-domain filters: (a) low-pass filter
equivalent to a 3 ⇥ 3 average filter in the spatial domain; (b) high-pass filter equivalent to a 3 ⇥ 3
composite Laplacian sharpening filter in the spatial domain.

11.2 FOURIER TRANSFORM: THE MATHEMATICAL FOUNDATION

The Fourier Transform (FT) is a fundamental tool in signal and image processing2. In
this section we discuss the mathematical aspects of 2D transforms in general, and then
introduce the 2D FT and its main properties.

2A complete, detailed analysis of the FT and associated concepts for 1D signals is beyond the scope of this text.
Please refer to the “Learn more about it” section for useful pointers.

Inverse	
  2D	
  Fourier	
  Transform	
  (FT)	
  

FT	
  

operatorinvariant position  linear, a is  ),( yxh
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Low-­‐Pass	
  Filtering	
  (LPF)	
  

¢  Low-­‐pass	
  -ilters	
  attenuate	
  the	
  high	
  frequency	
  
components	
  of	
  an	
  image,	
  while	
  leaving	
  the	
  low	
  
frequency	
  components	
  unchanged.	
  	
  

¢  The	
  typical	
  overall	
  effect	
  of	
  applying	
  a	
  low-­‐pass	
  
-ilter	
  (LPF)	
  to	
  an	
  image	
  is	
  a	
  controlled	
  degree	
  of	
  
blurring.	
  	
  

Low-­‐Pass	
  Filtering	
  (LPF)	
  
¢  Example	
  of	
  LPF	
  for	
  smoothing	
  of	
  false	
  contours	
  

¢  Example	
  of	
  LPF	
  for	
  noise	
  reduction	
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(a) (b)

Figure 11.6 Example of using LPF to smooth false contours: (a) Original image; (b) Result of
applying a LPF.

(a) (b)

Figure 11.7 Example of using LPF for noise reduction: (a) Original image; (b) Result of applying
a LPF.

where D(u, v) =

p

(u2
+ v2) represents the distance between a point of coordinates

(u, v) and the origin of the 2D frequency plan, and D0 is a non-negative value, referred to
as the cutoff frequency (or cutoff radius).

Figure 11.8 shows the frequency response plot for an ideal LPF. Figure 11.9 shows an
example image and its Fourier spectrum. The rings in Figure 11.9(b) represent different
values for cutoff frequencies (D0): 8, 16, 32, 64, and 128.

Figure 11.10 shows the results of applying ideal low-pass filters with different cutoff
frequencies to the original image: lower values of D0 correspond to blurrier results. A
close inspection of Figure 11.10 shows that the filtered images are not only blurry versions
of the input image – an expected outcome, common to all low-pass filters –, but also exhibits
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Rings denote s 
different cutoff 
frequencies 

Ideal	
  	
  
Low-­‐Pass	
  Filter	
  

¢  Ideal	
  LPF	
  example	
  
¢  Results	
  are	
  for	
  cutoff	
  

frequencies:	
  	
  
(b)	
  8	
  pixels	
  
(c)	
  16	
  pixels	
  
(d)	
  32	
  pixels	
  
(e)	
  64	
  pixels	
  
(f)	
  128	
  pixels	
  	
  

¢  There	
  are	
  noticeable	
  ringing	
  
artifacts	
  due	
  to	
  the	
  sharp	
  
transition	
  between	
  passpand	
  
and	
  stopband.	
  	
  

Ringing 
artifact 
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Gaussian	
  Low-­‐Pass	
  Filtering	
  
¢  The	
  width	
  of	
  the	
  bell	
  shaped	
  

curve	
  is	
  controlled	
  by	
  the	
  
parameter	
  sigma,	
  which	
  is	
  
equivalent	
  to	
  the	
  cutoff	
  
frequency.	
  	
  

¢  Lower	
  sigma	
  means	
  more	
  
strict	
  -iltering.	
  	
  

¢  The	
  smooth	
  transition	
  
between	
  passband	
  and	
  
stopband	
  guarantees	
  that	
  
there	
  will	
  be	
  no	
  noticeable	
  
ringing	
  artifacts	
  in	
  the	
  output	
  
image.	
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Gaussian	
  
Low-­‐Pass	
  Filter	
  

¢  Gaussian	
  LPF	
  example	
  for	
  
various	
  sigma:	
  
l  (b)	
  75	
  
l  (c)	
  30	
  
l  (d)	
  20	
  
l  (e)	
  10	
  
l  (f)	
  5	
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¢  Behaviour	
  is	
  a	
  function	
  of	
  
the	
  cutoff	
  frequency	
  	
  	
  	
  	
  	
  	
  	
  
and	
  the	
  order	
  of	
  the	
  -ilter	
  n.	
  

¢  The	
  steepness	
  of	
  the	
  
transition	
  between	
  
passband	
  and	
  stopband	
  is	
  
controlled	
  by	
  n.	
  

¢  Higher	
  n	
  corresponds	
  to	
  
steeper	
  transitions.	
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BuTerworth	
  
Low-­‐Pass	
  Filter	
  

¢  Butterworth	
  LPF	
  	
  
example	
  for	
  n	
  =	
  4	
  and	
  
various	
  cutoff	
  
frequencies:	
  	
  
l  (b)	
  8	
  pixels	
  
l  (c)	
  16	
  pixels	
  
l  (d)	
  32	
  pixels	
  
l  (e)	
  64	
  pixels	
  
l  (f)	
  128	
  pixels	
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  High-­‐Pass	
  Filter	
  

¢  Ideal	
  HPF	
  attenuates	
  all	
  frequency	
  components	
  within	
  a	
  
certain	
  radius,	
  while	
  enhancing	
  others.	
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  Filter	
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High-­‐Frequency	
  Emphasis	
  

(b)	
  Second	
  order	
  Butterworth	
  HPF	
  with	
  cutoff	
  
freuency	
  30	
  pixels.	
  	
  
(c)	
  High-­‐frequency	
  emphasis	
  with	
  a	
  =	
  0.5	
  and	
  b	
  =	
  1.	
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Project 1.5 

1.  Select an arbitrary NxM image. Let N denote the size of the smaller 
side of the image (usually the vertical side).  

2.  Find and display the luminance image (Y band) and its Fourier 
transform (in the logarithm domain). 

3.  Apply an ideal low pass filter of circular shape with diameter N/4 in 
the Fourier domain. Display the resulting image. 

4.  Apply an ideal low pass filter of square shape with the same support 
area as in Step 3 in the Fourier domain. Display the resulting image. 

5.  Apply an ideal low pass filter of diamond shape with the same 
support area as in Step 3 in the Fourier domain. Display the resulting 
image. 

6.  Calculate the RMSE values between the original luminance image 
and the images obtained in Steps 3, 4, and 5. 

7.  Compare the images obtained in Steps 3, 4, and 5, and the RMSE 
values obtained in Step 6 and comment on their differences. 
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Root Mean Squared Error 

RMSE = 1
L

s1[m,n]− s2[m,n]( )
n
∑

m
∑

2#

$
%
%

&

'
(
(

1
2

where L is the total number of pixels used 
in the above double summation. 
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