EE421/521
Image Processing

Lecture 5
FREQUENCY DOMAIN PROCESSING

Spatial
Frequency &
HVS
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Spatial Frequency

o Spatial frequency measures how fast the image intensity
changes in the image plane

o Spatial frequency can be completely characterized by the
variation frequencies in two orthogonal directions (e.g.,
horiZental and vertical)

o cycles/horizontal unit distance
J,: cycles/vertical unit distance

Horizontal and vertical frequency can be combined and
expressed in terms of magnitude and angle:
L=\ £+ 1)
3 0= arctan(f")
1,

x

Spatial Frequency

s(x, y) = sin(107zx) s(x,y) =sin(107zx + 2077)

Figure 2.1 Two-dimensional sinusoidal
signals: (a) ( fy. fy) = (5.0):

) ( fy, 'Ij‘.l = (5, 10). The horizontal and
vertical units are the width and height of
the image, respectively. Therefore. fy =5
means that there are five cycles along each
row.

k\\

o= fl+ fy2 = l1cycles/unit length, 6 = arctan(f, / f, ) = 64°
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® 2D Sinusoidal

Fig. 2.3 Perspective view of a 2-D cosine wave, cos[2rt(ux+vy)]

[ (D.E. Pearson, Transmission and Display of Pictorial Information,
John Wiley & Sons, 1975, p.5)

o Angular Frequency

o The previous definition does not take into account the
viewing distance.

o More useful measure is the angular frequency,
expressed in cycles per degree:

h h 1804
0 =2arctan| — | = — (radian) = —— (deg.
(Zd) 2d( ) er( g)

10/24/13



Angular Frequency

_ ﬁ _ d [, tcycles per picture height
fg B E - 1804 fs (de) [, rcycles per degree

For the same picture and picture height (h), angular
frequency increases with distance.

For fixed viewing distance (d), larger displays give less
angular frequency.

Resolution

o The ability to seperate two adjacent
pixels, that is, resolve the details in test
grating.

o This ability depends on several factors
such as:

Picture (monitor) height (h)
Viewer’s distance from monitor (d)

The viewing angle (theta)
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® Viewing Distance

SDTV

480 picture lines
" (3
\
20/20 vision < }
=1 min of arc |
(1/60 degrees) 7.1xPH
HDTV >
1080 picture lines
" (3
Optimum viewing distances: <( )
. SDTV = 7.1 x PH (picture height) M
+ HDTV=3.1xPH ‘
3.1xPH

Horizontal Viewing Ranges at

Optimum Distances

SDTV
480 picture lines

HDTV
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Contrast Sensitivity vs. Spatial
Frequency of HVS

o Contrast sensitivity
function (CSF) for
various retinal
illuminance values

o We can not perceive

beyond a certain spatial

frequency (50cpd).

Yo

(Modulation threshold)-1

200 +

-
=
1=

o
o

204
10 +
st
trolands w 0.9
® 900 4009
2T e 90 0.009

=9 400009

0.5 1 2 5 10 20 50
Spatial frequency (cycles/degree)

Spatial Frequency for Peak
Contrast Sensitivity

HDTV

1080 picture lines N g= L

1PH
3.1xPH

9Td curve peaks at f, =4cpd — f, =72cpPH — 15 lines per cycle
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Implications and Applications

o The HVS is more sensitive to low spatial frequencies (i.e.,
luminance changes over a large area) than high spatial
frequencies (i.e., rapid changes within small areas), which is an
often-exploited aspect of most image compression techniques.

o The HVS is more sensitive to high contrast than low contrast
regions within an image, which means that regions with large
luminance variations (such as edges) are perceived as
particularly important and should therefore be detected,
preserved and/or enhanced.

o Hence, may discard redundant high spatial frequency
content while preserving edges

Note: Importance of Edges

o Our visual system tends to overshoot and
undershoot at the boundaries of regions with
different intensities (recall Mach bands).

o Explains the ability to seperate objects even in
dim light.

T
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of lightness
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® Note: Importance of Edges
Our visual system groups wavelengths of a rainbow to form distinct
color bands. It draws artificial lines to separate one color from another.
—
15
[

Frequency
Representation
of Images
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Signal Representation Using

[
Sinusoids
All periodic signals can be represented as a sum of sinusoids.
AV
MWV
mf\
M ,
J \\\/\\ /V/%h\
17 A[A/
[

Square Wave Example
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2D Sinusoidal Images

|

MMl
[l

Image Example

original
1.2% 5%
20% 80%

20
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° Assumed Periodicity for Images
Fundamental Period N =image size
Fundamental Frequency w = %t
Sinusoidal Frequencies kw, kEZ

® Signal Synthesis with Sinusoidals

(o o] (o]

x(t) = Z a; cos(kwt) + Z by sin(kwt)

k=0 k=1

—1(pib 4 o-i0 ing = -~ (e — g0
cosH—z(eJ +e/%) and smH—zj(eJ e 19)

[ee}

x(t) = Z cpelket

k=—c0

22
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® 2D Fourier Transform

frequency domain spatial domain
Discrete Fourier } M-iN-1 N
transform (DFT) F(uv) = X > flx. y)e 2rus/Mrey/N)
of f(x.y) *=0 y=0
Inverse discrete | M-1N-1 -
Fourier transform flx.y)=—— E 2 F(u. v) e/27x/M+vy/N)
(IDFT) of Flu.v) MN =6 556
Polar representation F(u,v) = |F(u.v)|e/*“)
, , 1”2
Spectrum |F (u.v)| = [R-unlﬂ + I'ULlﬂ}
R = Real(F). I = Imag(F)
- , , tan-! Iu.v)
ase angle H(w. v) = tan
hase angle dlu, v) u R(w. v)

23

o MATLAB Example

@

I = imread('Figurell 04_a.png'); v
Id = im2double(I) ;

ft = ££t2(1d);

ft_shift = fftshift(ft);

imshow (log(l + abs(ft_shift)), [])

10/24/13
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Transform Domain Processing

o Certain image processing tasks (e.qg., filtering, compression)
can be better performed in the transform domain.

Spatial
domain

T () RIT ()]

| Operation .| Inverse

Transform R “| Transform

Spatial
domain

Transform domain

Separability of Fourier
Transform

o The Fourier Transform is separable, i.e.,
the FT of a 2D image can be computed by
two passes of the 1D FT algorithm, once
along the rows (columns), followed by
another pass along the columns (rows) of
the result.

10/24/13
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Fourier
Transform
Properties

Fourier Spectrum of a 1D
Sinusoidal

14



Fourier Transform of a 2D

Sinusoidal

original
image

11
10

w

Fourier Transform of a Stripe

20
40
60
80
100
120

20 40 60 80 100120

va{\ﬂ

Fourier
Transform

Fourier transform
Along the vertical axis
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Effect of Scaling and Rotation

¥ [ stxy) @y |IS(ex, @yl
o <, 0. ¢ o g

31

® Effect of Rotation

Image Fourier Transform

o Ifanimage is rotated
by a certain angle 6,
its 2D FT will be
rotated by the same
angle.

4

10/24/13
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® Linearity
Sla- fl(z,y) +b- f2(z,y)] = a- Fl(u,v) + b F2(u,v)
o Translation

Sf(x — 20,y — vo)] = F(u,v) - exp[—j2m(uzo/M + vyo/N)]

10/24/13
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Periodicity

F(u,v) = F(u+ M,v+ N)

Symmetry

o Conjugate symmetry:
F(u,v) = F*(—u,—v)
where:

F*(u,v) is the conjugate of F'(u,v)

i.e., if: F(u,v) = R(u,v) + jI(u,v)

then:
F*(u,v) = R(u,v) — jI(u,v)
|F(u,v)| = [F(—u, —v)]

10/24/13
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More on Symmetry

f(x.y)real e F(u,v) = F(—u, -v)
< R(u,v)even: l(u. v)odd

< |F (u. v)| even: d(u. v)odd

37

Average Value

M-1N-1

1 l
X.y) = — (L y) = 0.0
7(‘ Y) MN ;, "__Z_”f(l.") MN F )

38
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Parseval’s Relation

SS @ =S SIF@ v

39

Magnitude & Phase of FT

M—l N-1
F(u,v) = E Ef(x y)e—jlx(ux/M+uy/N)
x=0 y=0
MxN
. Magnitude
IDFT(x)
DFT

Phase

£DFT(x)

flx.y)(=1)Y""Y< F(u — M/2.v — N/2) w0

10/24/13
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Shifting the FT to the Center of
the Rectangle

DFT

1

fx.y)(—=1)"Y< F(u — M/2.v — N/2)

1

Multiply the intensity of the

pixel at (m,n) with (=1)"""

41

Effect of the Shift in the Image

f(x = x0.y — yo) & F(u.v)e 27wso/M+vyo/N)

MxN

Shifted by (m,n)

Magnitude not changed

IDFT(x)

Phase changed
~ /DFT(x)
|+ 2akm/M
+2naln/ N

42
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Fig.4.24(a).(f)

Fourier Phase & Image Edges

abc
all@fi

FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to 43
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.

Boundary Effects

Spatial Domain Frequency Domain

44
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° Periodicity Assumption

45

° Periodicity Assumption

o Apply mirroring

10/24/13
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Periodicity Assumption

o Apply edge tapering

Remove Low Frequencies
(Edge Detection)

Spatial Domain Frequency Domain

48
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Remove High Frequencies
(Blurring)

1y

Spatial Domain Frequency Domain

—-
-
:

Remove Low and High
Frequencies

Spatial Domain Frequency Domain

50
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2-D Convolution
& DFT
® Linear 2-D Convolution
ylm,n]= 2 .Zh[m —i,n = jIx[i, /]
.x h Iy

(M +K-Dx(N+L-1)

10/24/13
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Linear 2-D Convolution via DFT

Pad with zeroes

J.

(M +K-1D)x(N+L-1) (M +K-1D)x(N+L-1)

orr  y=IDFT(DFT(x)-DFT(k))  DFT “

Circular 2-D Convolution

MxN

Y is also MxN 54

10/24/13
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‘ Circular 2-D Convolution via DFT

Pad with zeroes

h }

MxN MXN

DFT DFT

y = IDFT(DFT(x)- DFT(%))

1-D Convolution
with Matrix
Operations

10/24/13
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1-D Circular Convolution
ym] = hm)sx{m] = > hm = ilali]

h

Yy n

1-D Circular Convolution
a Matrix Multiplication

ylm] = hm]*x[m] = Zh[m — (i)

[ Yo ] [h by o b R
Y = HX N by hy hy o 2
= h, 0
Visroa h, . . o hy
| V- | _h—l hy bk ]
f

| Circulant matrix |

.XM_I -

as

Xvo2

58
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® 1-D DFT as Matrix Multiplication

M-l
X ki —j2mkm/ k+ +
X[k]= > W x[m] W =71ﬁe 2l _ g (ks s

m=0
X =WX
X W oD X
X = . W = : : . : X —
X (M-1)0 (M-1)(M-1)
Xy WM . WM X,

59

DFT Diagonalizes any
Circulant Matrix

Columns and rows of W
are orthonormal

w=w'=w"

W' Hw), = E E WiaH W =3 S Wi Wil
74
= E A NN B AN
P Z 4

J

= hkfskl

W HW = diag(i?o,---,l?M ])

60
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Convolution in Space

Product in DFT
Y =WY =WHX = (WHW \WX)
=diazg,r(l?o,---,iNzM_1 X
JN’o }70 ) 0 )70
yM 1 0 - EM-I %M—l

Separable 2-D
Filtering

10/24/13
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° Separable 2-D Filter
y[m,n]=EEh[m—l,n—]]x[l,]]

i

seperable h[m, n] = hl [m]h2 [I’l]

63

° ‘ Filtering the Rows

x[m, j1= Y mim=illi, /]

e (M -10)
HON-1) -

(x(0,0) -+ x(M-10)

(0] - {hl(—l)}
n()J - hI(OJ

64

(X(O,N-1) - x(M-1,N-1)

10/24/13

32



10/24/13

° Filtering the Columns

yim.nl= Y hin - jIxim, j]

WM -10)
YON-1) -

(1, (0) -+ (1)

hy(=1) - h(0)

X(0,0) ) - [ XM -1,0)
SO,N-1)) - (FM-1,N-1
65

° Images and Filters as Matrices

y(0,0) - y(M-10) ]
Y = : . :

YO.N=1) - y(M-LN-1)]

x(0,0) x(M -1,0) ]
X = : . :

Circulant matrix x(O,LN-=1) - x(M-1,N-1) Circ‘uI;t matrix
™~ hy(0) (0) -

AC)

H=| ! .
h() - (0)

hy(1)
hy(-1) - hz(O)LM

66
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Result 1: 2-D Convolution with a
Separable Filter as Matrix Multiplication

yim.nl= Y N hm = ilh[n = j]x{i. j]

| Y=HIXH, |

67

Result 2:
2-D DFT as Matrix Multiplication

DFT(x)=%[k,11= ¥, S W, Wy'x[m,n]
= E W E W x[m,n]

~
= E Wlrx[k,n]

rows

columns

fn — j27km | M
w, =e”’

It —j27n/ M
WN" =e J<mn

X =wxw,, |

68
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Result 3: 2-D Convolution with a
Separable Filter as a Product of DFTs

~

Y =W, YW, =WN(H2TXHl)WM

= (WNHzTWN XWNXWM XWMHlWM )
_ AT
I‘]1 is circulant H2 is circulant
ﬁl =diag(h, -+ h ) [—72 =diag(h,, -+ hyy.)

[Zd = }71,1}72,/()?/«1]

2-D Convolution
with Matrix
Operations

(Non-Separable Filters)

35
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Lexicographical Ordering of
Pixels
y(Q,O) ] [ x(q,O)
y(OJ:V -1 x(O,]:V -1)
Y= X =
»(M -1,0) x(M -1,0)
| y(M —;,N—l)_ | x(M —;,N—l)_

Non-Separable Filter as a
Matrix Multiplication

36
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2-D Filter as a
Block-Circulant Matrix

\

Y =WY =WHX = (WHW \W.
- diag(diag(fy o, .

Lexicographical
ordering of DFT(Y)

hy(0) - k() y(0) - hlg‘
First row of
filter as a ho(0) - b)) hy(0) e (D)
circulant o P oo
matrix (=1 - ky(0) By(=1) - h(0) (1) - hL(0)
m(0) e By(1) hy(0) - hy(1)
h,(-—l) h,('O) hy(=1) - Iy(0)
hy(0) - hy() hy(0) - (1)
h,,('—l) 11,1.(0) ho(=1) -+ hy(0)
° 2-D Convolution with a Non-
Separable Filter as a Product of DFTs
Lexicographical Block circulant Block circulant Lexicographical
ordering of Y DFT matrix filter matrix ordering of X

X/

OMll dlag N-1,00""

N 1 Ml/))X
Lexicographical
ordering of DFT(Y)

74
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Frequency
Domain
Filtering

Convolution Theorem

A filter can be implemented in the spatial domain
using convolution

A filter can also be implemented in the frequency
domain

m Convert image to frequency domain
m Convert filter to frequency domain

m Multiply filter times image in frequency
domain

m Convert result to the spatial domain

10/24/13

38



Frequency-Domain Filtering

In pqt image Tr’;(:;?oerrm
f&xy) (FT)
Output image [nv'?rI::sfF;l:l:Ier
&x.y) (IFT)

By Oge Marques Copyright © 201 | by John Wiley & Sons, Inc. Al rights reserved.

Mathematical foundation

o Convolution theorem

g($7y) = f(x,y) * h(x7y)
FT

G(u,v) = F(u,v)H (u,v)
g(z,y) =§ " [F(u,v)H(u,v)]

Inverse 2D Fourier Transform (FT)

h(x,y) isa linear, position invariant operator

10/24/13
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Low-Pass Filtering (LPF)

o Low-pass filters attenuate the high frequency
components of an image, while leaving the low
frequency components unchanged.

o The typical overall effect of applying a low-pass
filter (LPF) to an image is a controlled degree of
blurring.

Low-Pass Filtering (LPF)

o Example of LPF for smoothing of false contours

’ [ ——

o Example of LPF for noise reduction

10/24/13
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® |Ideal Low-Pass Filtering

_J1 if D(u,v) < Dy
Hi(u,v) = { 0 ifD(u,v) > Dy

D(u,v) = Jl? +v?): distance

between a point and origin

Rings denote s
different cutoff
frequencies

D, : cutoff frequency (cutoff radius)

ldeal
Low-Pass Filter

o Ideal LPF example
o Results are for cutoff

frequencies:
(b) 8 pixels Ringing
(c) 16 pixels artifact
(d) 32 pixels

(e) 64 pixels
(f) 128 pixels
o There are noticeable ringing
artifacts due to the sharp
transition between passpand
and stopband.

10/24/13
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Gaussian Low-Pass Filtering

o The width of the bell shaped
curve is controlled by the
parameter sigma, which is
equivalent to the cutoff
frequency.

o Lower sigma means more
strict filtering.

o The smooth transition
between passband and
stopband guarantees that
there will be no noticeable

<>

He(u,v) = e 202 ringing artifacts in the output
image.

D(u,v)2

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. Al rights reserved.

Gaussian
Low-Pass Filter

o Gaussian LPF example for
various sigma:
(b) 75
(c) 30
(d) 20
(e) 10
M5

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. Al rights reserved.
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Butterworth Low-Pass Filtering

Behaviour is a function of
the cutoff frequency D, .
and the order of the filter n.

The steepness of the
transition between
passband and stopband is

controlled by n.
Higher n corresponds to

steeper transitions. Hp(u,v) = I+ [D(w, )/ Dol?
u, v o|“™

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. Al rights reserved.

Butterworth &
Low-Pass Filter

o Butterworth LPF
example for n =4 and
various cutoff
frequencies:

(b) 8 pixels
(c) 16 pixels
(d) 32 pixels
(e) 64 pixels
(f) 128 pixels

(©) ()
By Oge Marques Copyright © 201 | by JohnWiley & Sons, Inc. Al rights reserved.

10/24/13
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® Ideal High-Pass Filter

o Ideal HPF attenuates all frequency components within a
certain radius, while enhancing others.

N_J0 if D(u,v) < Dy
Hi(u,v) ‘{ 1 if D(u,v) > Dy

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. Al rights reserved.

® Gaussian High-Pass Filter

_ D(u.)?

H(;(Il,’l‘) =1—e 202

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. Al rights reserved.

10/24/13
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® Butterworth High-Pass Filter

1
1+ [D()/D(u_ ‘p)]‘Zn

< .,

Hp(u,v) =

By Oge Marques Copyright © 2011 by John Wiley & Sons, Inc. Al rights reserved.

® High-Frequency Emphasis

Hpfe(u,v) = a+bH(u,v)

(b) (c)

(b) Second order Butterworth HPF with cutoff
freuency 30 pixels.

(c) High-frequency emphasis witha=0.5and b = 1.

10/24/13
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o
Project 1.5
Fourier Transform
Due 31.10.2013

® ‘ Ideal Low-Pass Filtering

1 if D(u,v) < Dy
Hi(u,v) = { 0 if D(u,v) > Dy

D(u,v) =J[u> +v?): distance

between a point and origin
D, : cutoff frequency (cutoff radius)

10/24/13
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Project 1.5

1. Select an arbitrary NxM image. Let N denote the size of the smaller
side of the image (usually the vertical side).

2. Find and display the luminance image (Y band) and its Fourier
transform (in the logarithm domain).

3. Apply an ideal low pass filter of circular shape with diameter N/4 in
the Fourier domain. Display the resulting image.

4. Apply an ideal low pass filter of square shape with the same support
area as in Step 3 in the Fourier domain. Display the resulting image.

5. Apply an ideal low pass filter of diamond shape with the same
support area as in Step 3 in the Fourier domain. Display the resulting
image.

6.  Calculate the RMSE values between the original luminance image
and the images obtained in Steps 3, 4, and 5.

7. Compare the images obtained in Steps 3, 4, and 5, and the RMSE
values obtained in Step 6 and comment on their differences.

93

Root Mean Squared Error

where L is the total number of pixels used
in the above double summation.

10/24/13
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Next Lecture

o SAMPLING

10/24/13

48



